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Abstract

Using an extensive numerical search for the simplest chaotic non-polynomial autonomous three-dimensional dynamical
systems, we identify an elementary third-order diffential equation that contains only one control parameter and only one
nonlinearity in the form of the modulus of the dynamical variable. We discuss general properties of this equation and the
possibility of chaotic behavior in functionally closely related equations. Finally, we present its analytical solution in an
algorithmic way. q 1999 Published by Elsevier Science B.V. All rights reserved.
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w xFollowing the seminal studies of Lorenz 1 and
w xRossler 2 , the investigation of the time evolution of¨

w xdynamical systems 3 in physics has been preferen-
tially focused on the exploration and understanding
of aperiodic or chaotic behavior within the last
decades. Although there is no commonly accepted
definition of chaotic behavior, it is widely accepted
w x Ž .3 that i a non-periodic bounded long-time evolu-
tion of a time-continuous dynamical system leading

Ž .to a strange attractor in its phase space and ii a
sensitive dependence on the initial conditions being
characterized by the appearance of at least one posi-
tive Lyapunov exponent are signatures of a chaotic

w xdynamics. It is also well known 3 that the basic
requirements for the appearance of chaotic behavior
in autonomous time-continuous dynamical systems,

Ž . Ž . Ž Ž . Ž .. Ž .xsV x with x t s x t , . . . , x t , are i a˙ 1 n

Ž .phase space dimension nG3 and ii some sort of
Ž .nonlinearity in the vector field V x .

In spite of the major progress and deep insights in
the mechanisms that underlie regular and chaotic

w xdynamics obtained so far 3,4 , there are still funda-
mental questions that are only partly solved. A par-
ticularly interesting problem is the following: What
are the simplest functional forms of three-dimen-
sional autonomous dynamical systems that still pos-
sess chaotic behavior at least for some ranges of the
control parameters? Only recently has this question
attracted interest. Using a numerical search for
three-dimensional dynamical systems that have only

w xquadratic nonlinearities, Sprott 5 was able to iden-
tify nineteen distinct vector fields that are all func-

w xtionally more elementary than the Lorenz model 1
w xand the Rossler model 2 and still possess a chaotic¨
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w xdynamics. On the other hand, Zhang and Heidel 6
were able to show analytically that many classes of
vector fields being even simpler that Sprott’s models
w x5 cannot be chaotic.

Even more recently, further progress in this direc-
tion has been achieved by considering a restricted
class of three-dimensional dynamical systems, so-

w xcalled jerky dynamics 7–11 . These are ordinary
differential equations in one scalar real dynamical

Ž . Ž . Ž .variable x t that are i of third order, ii explicit
Ž .and iii autonomous. Therefore, their functional form

{ {Ž .reads xsJ x, x, x with x being the jerk or, me-˙ ¨
chanically speaking, the rate of change of the accel-

Ž .eration and J x, x, x being the jerk function. Under˙ ¨
certain restrictions, a jerky dynamics can interpreted
as the direct extension of a one-dimensional Newto-

w xnian dynamics to spatially non-local forces 10 .
Nevertheless, the investigation of jerky dynamics

w xgoes far beyond strictly mechanical systems 12 . In
Ž .particular, the following has been shown: i One

single quadratic nonlinearity in the otherwise linear
jerk function can already lead to chaotic behavior
w x Ž .7–9 , ii the simplest polynomial chaotic jerk func-

w x Ž . 2tion 7,8 is determined by J x, x, x syAxqx yx˙ ¨ ˙ ˙
with 2.017FAF2.057. Jerky dynamics can be con-
sidered as the direct time-continuous counterpart to

w xone-dimensional chaotic iterated maps 3 with
Sprott’s minimal polynomial chaotic jerky dynamics
w x7,8 as counterpart of the logistic map.

The purpose of this letter is threefold. First, we
examine how far the functional form of the nonlin-
earity can be weakened without losing the chaotic
behavior in jerky dynamics. Second, we identify the
probably most elementary piecewise linear chaotic
jerky dynamics, discuss some of its general proper-
ties and present its analytical solution. Third, we
give insight why functionally closely related jerky
dynamics cannot behave chaotically.

Obviously, the most elementary piecewise linear
functional dependence, the modulus of the dependent

< Ž . <variable, x t , or equivalently, the product of the
Ž . w Ž .xdependent variable and its sign, x t sgn x t , seems

to be a reasonable candidate for a nonlinearity that
might lead to a potentially chaotic jerky dynamics.
This speculation is also supported by the aforemen-
tioned analogy of jerky dynamics and one-dimen-
sional iterated maps since it is well known that the

w xpiecewise linear tent map 3 shows chaotic behavior.

Therefore, one might suppose that e.g. the general
class of jerky dynamics

{
< <xqA xqA xqA x qA s0 1Ž .¨ ˙1 2 3 4

Ž .with A is1,2,3,4 being control parameters mighti

behave chaotically for suitably chosen control pa-
rameter values and initial conditions. Note that Eq.
Ž .1 differs from a linear jerky dynamics only by the

Ž .replacement of x t by its modulus and not by the
addition of the nonlinearity.

Provided that A is non-zero, a scaling of the2
< <y1r2time, t™ A t, and the dynamical variable, x2

< <y3r2
™ A A x, can be used to eliminate two coeffi-2 4

Ž .cients from Eq. 1 . The resulting functional form
{

< <reads xqAx"xqC x q1s0 where the plus sign¨ ˙
Ž . Ž .minus sign holds for A )0 A -0 and the2 2

< <y1r2entering coefficients are given by AsA A1 2
< <y3r2 Ž .and Cs A A sgn A .2 3 4

Since there are no analytical criteria known to
Ž .decide whether Eq. 1 possesses chaotic dynamics

for some ranges of the control parameter and initial
conditions, the verification of our speculation relies
on a systematic numerical search using the methods

w xdeveloped in Ref. 5,7,8,13 . To find chaotic solu-
tions, the space of control parameters and initial
conditions has been scanned to find a positive Lya-

w xpunov exponent 14 in the long-time evolution of
Ž .1 . This has been accompanied by a subsequent
check of the fractal dimension of the attractor.

Although during this procedure many control pa-
Ž .rameter combinations of Eq. 1 with chaotic dynam-

ics have been found, we focus here on one particu-
Ž .larly interesting and elementary subsystem of 1 . It

is obtained by setting A sA and A syA sA1 2 3 4

s1 and explicitly given by the following non-poly-
nomial jerky dynamics

{
< <xqAxqxy x q1s0. 2Ž .¨ ˙

To verify the appearance of chaotic behavior for
some parameter ranges of A, we show in Fig. 1 the
bifurcation diagram of the long-time evolution of the

Ž .successive local maxima of the solution x t in the
range 0.5FAF0.8. As initial conditions, xsxsx˙ ¨
s0 have been used. The Feigenbaum diagram clearly
shows a period-doubling route to chaos when A is
lowered from 0.8 to 0.64085. For smaller values of
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Ž .Fig. 1. Successive maxima of the long-time evolution of x t
Ž .generated by Eq. 2 as function of the control parameter A in the

range 0.5F AF0.8. Initial conditions are given by xs xs xs0.¨ ˙

A, there is the typical chaotic band structure dis-
rupted by the occurence of periodic windows. At
A,0.547, the period-three dynamics becomes un-

Ž .stable and the long-time evolution of Eq. 2 di-
verges to infinity.

In Fig. 2, we show the largest Lyapunov exponent
Ž .LE as a function of the control parameter A in the

Ž .same interval as in Fig. 1. Periodic chaotic dynam-
Ž .ics corresponds to LE being equal to zero positive .

This substantiates that the band structure in Fig. 1
represents indeed regions of sensitive dependence on
the initial conditions and, therefore, fulfils a signa-
ture of chaotic behavior.

Finally, as a representative example, we show in
Fig. 3a stereoscopic view of the attractor for As0.6.
This attractor possesses the typical Mobius-like¨

w xstructure known from the Rossler model 2 and also¨
closely resembles the attractor of the minimal poly-

w xnomial jerky dynamics 7 . For an animated rota-
tional three-dimensional view of the chaotic attractor

Ž . w xof Eq. 2 for As0.6, we refer to Ref. 15 . More-
over, the analysis of the Lyapunov spectrum shows

w xthat the Lyapunov or Kaplan–Yorke dimension 3
of the attractor at As0.6, D s2yL rL withKY 1 3

Ž . Ž .L L being the largest smallest Lyapunov expo-1 3

nent, is given by 2.055. This substantiates that the
attractor is a fractal.

Ž .In the remainder of the paper, we analyze Eq. 2
from the theoretical point of view. The only simple

Ž .symmetry that Eq. 2 fulfils is the invariance with

respect to the simultaneous transformation x™yx,
Ž .t™yt, and A™yA. Except for As0, Eq. 2 is

not reversible.
Introducing Õsx and asÕsx, the nonpolyno-˙ ˙ ¨

Ž .mial jerky dynamics 2 corresponds to a three-di-
Ž .mensional autonomous dynamical system xsV x˙

Ž .T Ž .with x s x,Õ,a and a vector field V x s
Ž .TV ,V ,V that reads component-wisex Õ a

xsV sÕ˙ x

ÕsV sa˙ Õ

< <asV syAayÕq x y1. 3Ž .˙ a

Ž .Except for the component E V rE xssgn x of thea
Ž .Jacobian matrix of the vector field, JsE V x rE x

which is is discontinuous at xs0, all other compo-
nent of J are constant. Nevertheless, the vector field

Ž .of the dynamical system 3 is still locally Lips-
chitzian at xs0. According to the Picard–Lindelof¨

w xtheorem 16 , this guarantees existence and unique-
Ž .ness of a continuous and differentiable solution x t

Ž .as long as x t is bounded. This directly implies that
Ž . Ž . Ž .x t , x t , and x t are also continuous and differen-˙ ¨

tiable with respect to the time t and therefore, the
smoothness of the chaotic attractor shown in Fig. 3.

{Ž . Ž .Inspection of Eq. 2 shows that the jerk x t is only
continuous, and therefore, the rate of change of the

{Ž . Ž .jerk, x t is discontinuous at values where x t is
zero.

Ž .Fig. 2. Largest Lyapunov exponent LE as function of the control
parameter A in the same range as in Fig. 1.
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Ž .Fig. 3. Stereoscopic view of the strange attractor of Eq. 3 for the
control parameter value As0.6 in order to obtain a three-dimen-
sional impression. The corresponding Lyapunov exponents are

Ž . Ž .given by L , L , L s 0.035,0,y0.635 .1 2 3

Ž .Integrating the model Eq. 2 with respect to time,
it can be rewritten in the form of a non-local oscilla-
tor

t
< <xqAxqxs dt x t y1 . 4Ž . Ž .¨ ˙ H

Ž .Mechanically speaking, Eq. 4 can be interpreted in
Ž .two ways: i As a damped harmonic oscillator being

t < <coupled by self-feedback H dt x t y1 to itsŽ .
Ž .own dynamics or equivalently, ii as a one-dimen-

sional Newtonian dynamics xsF of a particle of¨
unit mass where the force F is an additive combina-

Ž .tion of a an instantaneous force F that com-inst

bines a frictional force yAx and the motion in a˙
Ž .quadratic potential with b a non-local force F snl

t < <H dt x t y1 or memory term that integratesŽ .
over the positional history of the motion. Therefore,

Ž .Eq. 2 represents a simple example of a Newtonian
w xjerky dynamics 8–10 .

In particular the second interpretation has impor-
tant consequences for the possibility of chaotic be-
havior in jerky dynamics that are functionally closely

Ž .related to 2 . First, setting the additive constant in
Ž .the jerky dynamics 2 to zero, x qAxqx s¨ ˙

t < Ž . <H dt x t , chaotic dynamics cannot appear. This
follows from the fact that the integrand of the mem-

Ž .ory term in Eq. 4 is positive semidefinite and,
therefore, the memory term monotonically increases
with time.

Ž .In the long time limit, the evolution of x t
eventually escapes to infinity. Second, the same

argument also holds if the sign in front of the
< <nonlinearity x or the sign of the constant is in-

t < <verted, xqAxqxs"H dt x t q1 . In bothŽ .¨ ˙
cases chaotic behavior also cannot appear. This elu-
cidates the importance of the non-zero constant in

Ž .Eq. 2 and its sign for an aperiodic bounded dynam-
ics. Moreover, one obtains as an implicit condition
that bounded long-time dynamics cannot appear in

Ž . Ž . < Ž . <Eq. 2 or 4 if the minimum of x t is larger than
unity.

The contraction rate in phase space of the dynam-
Ž .ical system 3 , LsE xqE ÕqE a, equals the neg-˙ ˙ ˙x Õ a

ative of the control parameter yA, and therefore, the
model is globally dissipative for any positive A.
Conversely, this also implies an unbounded or di-

Ž .verging dynamics of Eq. 2 for any negative A and
initial values being different from the fixed points.
This narrows down the relevant control parameter
range for bounded dynamics to A)0. As can be
seen from Fig. 1, however, this is not enough to

Ž .guarantee boundedness of the time evolution of x t .
Ž .Obviously, Eq. 2 possesses two fixed points

given by xw s"1. To determine their stability, we
consider deviations u from these fixed points, usx

.w wŽ . Žyx , and rewrite Eq. 2 as u..qAuquy x q¨ ˙
. Ž w .u sgn x qu q1s0. If the modulus of u is

Ž w .smaller than unity, we can replace sgn x qu by
Ž w. Ž . Ž .sgn x . Using an ansatz u t Aexp lt , the char-

acteristic polynomial for the eigenvalues l is deter-
3 2 Ž w.mined by l qAl qlysgn x s0. Then, the

1 w xRouth–Hurwitz criterion 17 implies that the fixed
point xw sq1 is unstable for any A, whereas the

w < <fixed point x sy1 is stable for A)1 and u -1.
At As1, the fixed point xw sy1 becomes unsta-
ble via a Hopf bifurcation since the corresponding
eigenvalues are given by l sy1 and l syl s i.1 2 3

Ž .Based on the interpretation of Eq. 2 as a non-lo-
Ž .cal oscillator, Eq. 4 , we can provide a simple

qualitative picture of the dynamical behavior as a
function of A as depicted in Fig. 1. Since the control
parameter A represents the damping constant of the
non-local oscillator, we can roughly split the ranges

Ž .of A)0 into three parts. i For large damping,

1 For a third order polynomial l3 q a l2 q a lq a s0, the1 2 3
w xRouth–Hurwitz criterion states 17 states that the real parts of the

Ž .roots l are negative if and only if the conditions a )0, a )0,1 3

and a a y a )0 are fulfilled.1 2 3
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A)1, the oscillation amplitudes rapidly diminish
and the memory term on the right hand side of Eq.
Ž . Ž .4 approaches quickly a constant. ii In the interme-
diate range 0.547FAF1, the damping is too weak
to force the memory term to approach a constant.
Therefore, the memory term oscillates giving rise to
the plentora of complicated bounded dynamical be-

Ž .havior seen in Fig. 1. iii For A-0.547, the damp-
ing is too weak to keep the motion bounded. The

Ž .memory term on the right hand side of Eq. 4 builds
up and diverges to infinity.

As an aside, we note that replacing the nonlinear-
{2 2< < Ž .ity x by x in Eq. 2 , xqAxqxyx q1s0,¨ ˙

leads to a polynomial jerky dynamics that cannot
show chaotic behavior for the initial conditions men-
tioned above. The most complex dynamics of this
equation is a period-four limit cycle around As
1.125 that is bordered by two period-two limit cy-
cles. For A smaller than about 1.1075, the dynamics
is unbounded. Therefore, it is the algebraic weakness

Ž .of the nonlinearity in Eq. 2 that gives rise to the
complex dynamics depicted in Fig. 1.

Ž .Since Eq. 2 is piecewise linear, its exact solu-
Ž .tion can be obtained segment by segment for x t -0

Ž .and x t )0 combined with the appropriate match-
Ž .ing conditions for x t s0. The skeleton of the

Ž .solution of Eq. 2 is determined by the solution of
the linear equations
{
xqAxqx"xq1s0 5Ž .¨ ˙

Ž .where the plus sign in Eq. 5 applies if xF0 and
Ž .the minus sign if xG0. The solutions of Eq. 5

read explicitly
3

Ž k .Žk . r t"x t s" y1 q C e 6Ž . Ž . Ž .Ý "

ks1

where C Žk . are constants that are determined by the"

initial conditions and r Žk . the roots of the third-order"

polynomial r 3 qAr 2 qr "1s0. The latter can" " "

be explicitly calculated for any given A using Car-
dani’s formula 2.

2 The structure of the roots in the control parameter range
Ž . w Ž . x0F AF1 is as follows. If x t -0 x t )0 , the roots are given

Ž1. Ž1. w Ž1. Ž1. x Ž2. Ž3. ) Ž2.by r ss r ss and r s r ss q ivŽ .q q y y q q q q
w Ž2. Ž3. ) Ž2. x Ž1. w Ž1. xr s r ss q iv where s s is real andŽ .y y y y q y

w x Ž2. w Ž2. x w xnegative positive , s s real and positive negative , andq y
Ž j. Ž .v and v real. Except for As0, the moduli of s js1,2q y "

Ž . Ž .and v differ for x t )0 and x t -0."

Ž . Ž .The solution x t of Eq. 2 can be expressed as
N

x t s x t Q ty t 1yQ ty t 7Ž . Ž . Ž .Ž . Ž .Ý j jy1 j
js1

Ž . w Ž .with Q z denoting the Heaviside function Q z

Ž . Ž .xs0 1 if z-0 G0 , js1,2, . . . the number of
Ž .the segment, x tj

the solution of the j-th segment, and N the
maximum number of segments. If the solution of Eq.
Ž .2 reaches the fixed point or is unbounded, N is
finite. For any other dynamical behavior, N is infi-

Ž .nite. The solution of the j-th segment, x t , for thej
{

time interval t F tF t obeys x qAx qx q¨ ˙jy1 j j j j
Ž .s j x q1s0 and is determined byj

3
Ž .Žk . kx t ss j y1 q C exp r j t 8Ž .Ž . Ž . Ž . Ž .Ž .Ýj sŽ j. s

ks1

Ž . Ž . Ž .with initial conditions x t sx 0 , x t s˙j jy1 j jy1
Ž . Ž . Ž . Ž .x 0 x t sx 0 if js1 and x t s0,˙ ¨ ¨j jy1 j jy1
Ž . Ž . Ž . Ž .x t sx t , x t sx t if js˙ ˙ ¨ ¨j jy1 jy1 jy1 j jy1 jy1 jy1

Ž .2,3, . . . . The sign of the j-th segment, s j s",
Ž .generically switches from segment to segment, s j

Ž . Žk .sys jq1 , and selects the relevant roots r for"

Ž .the segment. The initial conditions determine s 1 . In
Ž . Ž . Ž . Ž Ž . .particular, s 1 equals q y if x 0 -0 x 0 )0 .

Ž . Ž . Ž .For the special initial conditions x 0 sx 0 sx 0˙ ¨
Ž . Žk .s0, s 1 sy applies. The coefficients C aresŽ j.

given by the solution of the linear algebraic system
3

Ž .Žk . k0ss j y1 q C exp r j tŽ .Ž . Ž . Ž .Ý sŽ j. s jy1
ks1

3
Ž .Žk . Žk . kx t s r C exp r j tŽ .˙ Ž . Ž .Ýj jy1 sŽ j. sŽ j. s jy1

ks1

3
2 Ž .Žk . Žk . kx t s r C exp r j t .Ž .¨ Ž . Ž .Ýj jy1 sŽ j. sŽ j. s jy1

ks1

The j-th segment of the solution ends when the time
Ž .t given by x t s0 has been reached. The time tj j j j

is determined by the smallest value of t that is larger
than t and obeys the transcendental equationjy1

3
Ž .Žk . k0ss j y1 q C exp r j t . 9Ž .Ž . Ž . Ž .Ž .Ý sŽ j. s j

ks1

Ž . Ž . Ž .The values x t , x t , and x t determine the˙ ¨j j j j j j

initial conditions for the solution segment x .jq1
Ž .Despite the functional simplicity of Eq. 2 , its

algorithmically determined solution looks rather
complicated and is not obvious that it leads to the
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complex dynamical behavior depicted in Fig. 1.
A more detailed analysis will be given elsewhere
w x18 . Here, we only note that p-periodic solutions
Ž .p positive and integer are determined by the condi-

Ž . Ž .tion x t sx tyt with t s t y tj jq2 p p p jq2 py1 jy1

in the long time limit, whereas chaotic solutions do
not reduplicate at all.

In conclusion, we have identified and partly ana-
lyzed the apparently most elementary piecewise lin-
ear jerky dynamics or three-dimensional dynamical
system that still allows for a chaotic evolution in
time for some control parameter ranges. This system
can be considered as the time-continuous chaotic
counterpart to the most elementary chaotic iterated

w xmap, the tent map 3 . The simplicity of this system
invites electronic implementation using operational
amplifiers and diodes. Such a circuit has been con-
structed and tested and behaves as predicted to within

Žthe precision of the electronic components typically
. w x10% 15,19 .

Note added in proof

After the acceptance of this letter, we learned of a
related study by A. Arneodo, P. Coullet, and C.

w Ž . xTresser J. Stat. Phys. 27 1982 171 . Using
Shil’nikov’s theorem, these authors were able to

{ .prove that the differential equation xqb x.qxs˙
Ž . Ž .f x with the piecewise linear function f x s1qax

Ž .if xF0 and f x s1ym x if xG0 satisfies the
Shil’nikov conditions for appropriately chosen val-
ues of the three entering parameters bs0.3375,
as0.633625 and m,2.158. This study, however,
did not deal with our more elementary case of a

modulus nonlinearity, asms1. It remains an open
problem for future research whether the appearance

Ž .of chaos in our system, Eq. 2 , can also be more
analytically motivated.
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